Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(-)-(P)-N, N^{\prime}-Bis[(5-bromo-2-hydroxy-phenyl)methylidene]-6,6'-dimethyl-1,1'-biphenyl-2,2'-dimethanamine

Anthony Linden* and Andreas J. Rippert

Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Correspondence e-mail: alinden@oci.unizh.ch

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.048$
$w R$ factor $=0.105$
Data-to-parameter ratio $=18.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

The absolute configuration of the enantiopure, axially chiral title compound, $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$, has been determined. The molecule has approximate C_{2} symmetry and intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds occur within each of the imine side chains of the molecule. The planes of the biphenyl aromatic rings are bent significantly from the axis of the central $\mathrm{C}-\mathrm{C}$ bond.

Comment

Axially chiral compounds containing a biphenyl moiety have been used extensively as chiral auxiliaries for asymmetric synthesis (Schmid et al., 1988), and we have been using some new axially chiral diimine ligands in asymmetric catalysis (Keller \& Rippert, 1999). The title compound, (I), was synthesized by a condensation reaction between enantiomerically pure (P)-6,6'-dimethyl-1,1'-biphenyl-2,2'-dimethylamine and 5-bromosalicylaldehyde. The structure of (I) was determined in order to confirm the absolute configuration of the chiral axis. With this structure in hand, the correlation between the Cotton effect displayed by the CD-spectrum of (I) and those of related biphenyl compounds that we have synthesized could then be used to deduce the absolute configurations of these latter compounds (Keller \& Rippert, 1999).

The refined value of the absolute structure parameter [0.013 (9); Flack \& Bernardinelli, 2000] unambiguously confirmed that the title compound is enantiopure and that the chiral axis has the P-configuration. The angle between the planes of the two phenyl rings of the $1,1^{\prime}$-biphenyl moiety is $79.88(14)^{\circ}$, where the acute angle is subtended by the two imine substituents. The ring planes, particularly that defined by $\mathrm{C} 7-\mathrm{C} 12$, are bent slightly away from the $\mathrm{C} 1-\mathrm{C} 7$ axis, so that neither atom C 4 nor C 10 lies on the continuation of this axis. Atoms C7 and C10 lie 0.104 (7) and 0.294 (12) \AA, respectively, from the mean plane through the ring defined by atoms $\mathrm{C} 1-\mathrm{C} 6$, while atoms C 1 and C 4 lie 0.026 (8) and 0.036 (12) A, respectively, from the mean plane through the ring defined by atoms $\mathrm{C} 7-\mathrm{C} 12$. An analysis of the conformations adopted by the biphenyl moieties in 682 error-free ordered organic structures stored in the Cambridge Structural

Received 21 February 2003
Accepted 24 February 2003
Online 7 March 2003

Figure 1
View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

Database (Version 5.24 of November, 2002; Allen, 2002) indicated that the bending of the ring planes away from the $\mathrm{C} 1-\mathrm{C} 7$ axis follows a normal distribution pattern, with no or very little deviation being displayed by the largest proportion of the structures, but that deviations of the magnitude observed for (I) are also quite common.

The imine groups are almost coplanar with their adjacent 5-bromo-2-hydroxyphenyl groups. The r.m.s. deviation of atoms $\mathrm{N} 1, \mathrm{O} 1, \mathrm{Br} 1$ and $\mathrm{C} 16-\mathrm{C} 22$ from their mean plane is $0.022 \AA$, with the maximum deviation being 0.041 (3) \AA for atom N1. This planar system makes an angle of $76.84(12)^{\circ}$ with the plane of the adjacent phenyl ring defined by atoms C1-C6. In the other corresponding phenylimine moiety, the r.m.s. deviation of the constituent atoms from their mean plane is $0.020 \AA$, with the maximum deviation being 0.044 (3) \AA for atom N 2 , and the plane makes an angle of $78.45(11)^{\circ}$ with the plane of the adjacent phenyl ring defined by atoms C7-C12. The planes of the phenylimine moieties lie such that the $\mathrm{O} \cdots \mathrm{Br}$ axes are almost parallel to the biphenyl $\mathrm{C} 4 \cdots \mathrm{C} 10$ axis. When viewed along the $\mathrm{C} 4 \cdots \mathrm{C} 10$ axis, the molecule has a distinct ' W ' conformation. The molecule has approximate C_{2} symmetry about an axis passing perpendicularly through the mid-point of the $\mathrm{C} 1-\mathrm{C} 7$ bond. The r.m.s. deviation of the atoms of the molecule from perfect C_{2} symmetry is $0.158 \AA$. Within each phenylimine moiety, the hydroxy group forms an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond with the imine N atom (Table 1), thereby creating a six-membered loop which has a graph-set motif of $S(6)$ (Bernstein et al., 1995).

Experimental

The synthesis of the title compound has been described by Keller \& Rippert (1999); m.p. 360 K. Spectroscopic analysis: $[\alpha]_{D}^{25}-20^{\circ}$ (c 1.05, ethanol); CD spectrum ($c 3.45 \times 10^{-5}$, ethanol, λ, nm): $217(-26.5)$, 235 (26.9), 254 (9.8), 263 (7.9), 318 (0.8), 349 (-0.25). Suitable crystals were obtained by cooling a saturated solution in ethanol to 273 K .

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=606.35$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=17.496$ (5) \AA
$b=18.590$ (2) \AA
$c=8.074$ (7) \AA
$V=2626(2) \AA^{3}$
$Z=4$
$D_{x}=1.534 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Rigaku AFC-5R diffractometer $\omega-2 \theta$ scans
Absorption correction: analytical
(de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.384, T_{\text {max }}=0.632$
8236 measured reflections 6049 independent reflections
3460 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.106$
$S=0.98$
6049 reflections
336 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 24 reflections
$\theta=17.0-19.5^{\circ}$
$\mu=3.12 \mathrm{~mm}^{-1}$
$T=173$ (1) K
Prism, yellow
$0.38 \times 0.28 \times 0.23 \mathrm{~mm}$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=27.6^{\circ}$
$h=-22 \rightarrow 22$
$k=-24 \rightarrow 24$
$l=-10 \rightarrow 10$
3 standard reflections every 150 reflections intensity decay: none
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0382 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.41 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.59 \mathrm{e}^{-3}$
Absolute structure: Flack \& Bernardinelli (2000); 2630 Friedel pairs
Flack parameter $=0.013(9)$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{N} 1$	$0.91(5)$	$1.88(6)$	$2.627(6)$	$138(5)$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 2$	$0.90(5)$	$1.80(5)$	$2.588(5)$	$145(4)$

The hydroxy H atoms were located in a difference Fourier map and their positions were refined freely along with individual isotropic displacement parameters. The methyl H atoms were constrained to an ideal geometry $(\mathrm{C}-\mathrm{H}=0.98 \AA)$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but were allowed to rotate freely about the $\mathrm{C}-\mathrm{C}$ bonds. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem.
Int. Ed. Engl. 34, 1555-1573.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Flack, H. D. \& Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.

organic papers

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Keller, F. \& Rippert, A. (1999). Helv. Chim. Acta, 82, 125-137.
Molecular Structure Corporation (1991). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. (Present address: 9009 New Trails Drive, The Woodlands, TX 77381, USA.)

Molecular Structure Corporation (1999). TEXSAN. Version 1.10. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Schmid, R., Cereghetti, M., Heiser, B., Schönholzer P. \& Hansen, H.-J. (1988) Helv. Chim. Acta, 71, 897-929.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). PLATON. Version of February 2003. University of Utrecht, The Netherlands.

